Skip to content
🎉 your bitcoin🥳

❤️ Cross compiler ❄️

"A cross compiler is a compiler capable of creating executable code for a platform other than the one on which the compiler is running. For example, a compiler that runs on a Windows 7 PC but generates code that runs on Android smartphone is a cross compiler. A cross compiler is necessary to compile code for multiple platforms from one development host. Direct compilation on the target platform might be infeasible, for example on a microcontroller of an embedded system, because those systems contain no operating system. In paravirtualization, one computer runs multiple operating systems and a cross compiler could generate an executable for each of them from one main source. Cross compilers are distinct from source-to-source compilers. A cross compiler is for cross-platform software development of machine code, while a source-to- source compiler translates from one programming language to another in text code. Both are programming tools. Use The fundamental use of a cross compiler is to separate the build environment from target environment. This is useful in several situations: * Embedded computers where a device has extremely limited resources. For example, a microwave oven will have an extremely small computer to read its touchpad and door sensor, provide output to a digital display and speaker, and to control the machinery for cooking food. This computer will not be powerful enough to run a compiler, a file system, or a development environment. Since debugging and testing may also require more resources than are available on an embedded system, cross- compilation can be less involved and less prone to errors than native compilation. * Compiling for multiple machines. For example, a company may wish to support several different versions of an operating system or to support several different operating systems. By using a cross compiler, a single build environment can be set up to compile for each of these targets. * Compiling on a server farm. Similar to compiling for multiple machines, a complicated build that involves many compile operations can be executed across any machine that is free, regardless of its underlying hardware or the operating system version that it is running. * Bootstrapping to a new platform. When developing software for a new platform, or the emulator of a future platform, one uses a cross compiler to compile necessary tools such as the operating system and a native compiler. * Compiling native code for emulators for older now-obsolete platforms like the Commodore 64 or Apple II by enthusiasts who use cross compilers that run on a current platform (such as Aztec C's MS-DOS 6502 cross compilers running under Windows XP). Use of virtual machines (such as Java's JVM) resolves some of the reasons for which cross compilers were developed. The virtual machine paradigm allows the same compiler output to be used across multiple target systems, although this is not always ideal because virtual machines are often slower and the compiled program can only be run on computers with that virtual machine. Typically the hardware architecture differs (e.g. compiling a program destined for the MIPS architecture on an x86 computer) but cross-compilation is also applicable when only the operating system environment differs, as when compiling a FreeBSD program under Linux, or even just the system library, as when compiling programs with uClibc on a glibc host. Canadian Cross The Canadian Cross is a technique for building cross compilers for other machines. Given three machines A, B, and C, one uses machine A (e.g. running Windows XP on an IA-32 processor) to build a cross compiler that runs on machine B (e.g. running Mac OS X on an x86-64 processor) to create executables for machine C (e.g. running Android on an ARM processor). When using the Canadian Cross with GCC, there may be four compilers involved * The proprietary native Compiler for machine A (1) (e.g. compiler from Microsoft Visual Studio) is used to build the gcc native compiler for machine A (2). * The gcc native compiler for machine A (2) is used to build the gcc cross compiler from machine A to machine B (3) * The gcc cross compiler from machine A to machine B (3) is used to build the gcc cross compiler from machine B to machine C (4) Example of Canadian Cross, scheme The end-result cross compiler (4) will not be able to run on build machine A; instead it would run on machine B to compile an application into executable code that would then be copied to machine C and executed on machine C. For instance, NetBSD provides a POSIX Unix shell script named `build.sh` which will first build its own toolchain with the host's compiler; this, in turn, will be used to build the cross compiler which will be used to build the whole system. The term Canadian Cross came about because at the time that these issues were under discussion, Canada had three national political parties. Timeline of early cross compilers * 1979 – ALGOL 68C generated ZCODE; this aided porting the compiler and other ALGOL 68 applications to alternate platforms. To compile the ALGOL 68C compiler required about 120kB of memory. With Z80 its 64kB memory is too small to actually compile the compiler. So for the Z80 the compiler itself had to be cross compiled from the larger CAP capability computer or an IBM System/370 mainframe. GCC and cross compilation GCC, a free software collection of compilers, can be set up to cross compile. It supports many platforms and languages. GCC requires that a compiled copy of binutils be available for each targeted platform. Especially important is the GNU Assembler. Therefore, binutils first has to be compiled correctly with the switch `--target=some-target` sent to the configure script. GCC also has to be configured with the same `--target` option. GCC can then be run normally provided that the tools, which binutils creates, are available in the path, which can be done using the following (on UNIX-like operating systems with bash): PATH=/path/to/binutils/bin:${PATH} make Cross compiling GCC requires that a portion of the target platform's C standard library be available on the host platform. The programmer may choose to compile the full C library, but this choice could be unreliable. The alternative is to use newlib, which is a small C library containing only the most essential components required to compile C source code. The GNU autotools packages (i.e. autoconf, automake, and libtool) use the notion of a build platform, a host platform, and a target platform. The build platform is where the compiler is actually compiled. In most cases, build should be left undefined (it will default from host). The host platform is always where the output artifacts from the compiler will be executed whether the output is another compiler or not. The target platform is used when cross compiling cross compilers, it represents what type of object code the package itself will produce; otherwise the target platform setting is irrelevant.https://www.gnu.org/s/libtool/manual/automake/Cross_002dCompilation.html For example, consider cross-compiling a video game that will run on a Dreamcast. The machine where the game is compiled is the build platform while the Dreamcast is the host platform. The names host and target are relative to the compiler being used and shifted like son and grand- son.https://mesonbuild.com/Cross-compilation.html Another method popularly used by embedded Linux developers involves the combination of GCC compilers with specialized sandboxes like Scratchbox, scratchbox2, or PRoot. These tools create a "chrooted" sandbox where the programmer can build up necessary tools, libc, and libraries without having to set extra paths. Facilities are also provided to "deceive" the runtime so that it "believes" it is actually running on the intended target CPU (such as an ARM architecture); this allows configuration scripts and the like to run without error. Scratchbox runs more slowly by comparison to "non-chrooted" methods, and most tools that are on the host must be moved into Scratchbox to function. Manx Aztec C cross compilers Manx Software Systems, of Shrewsbury, New Jersey, produced C compilers beginning in the 1980s targeted at professional developers for a variety of platforms up to and including PCs and Macs. Manx's Aztec C programming language was available for a variety of platforms including MS- DOS, Apple II, DOS 3.3 and ProDOS, Commodore 64, Macintosh 68XXX and Amiga. From the 1980s and continuing throughout the 1990s until Manx Software Systems disappeared, the MS-DOS version of Aztec CAztec C was offered both as a native mode compiler or as a cross compiler for other platforms with different processors including the Commodore 64Commodore 64 and Apple II.Apple II Internet distributions still exist for Aztec C including their MS-DOS based cross compilers. They are still in use today. Manx's Aztec C86, their native mode 8086 MS-DOS compiler, was also a cross compiler. Although it did not compile code for a different processor like their Aztec C65 6502 cross compilers for the Commodore 64 and Apple II, it created binary executables for then-legacy operating systems for the 16 bit 8086 family of processors. When the IBM PC was first introduced it was available with a choice of operating systems, CP/M-86 and PC DOS being two of them. Aztec C86 was provided with link libraries for generating code for both IBM PC operating systems. Throughout the 1980s later versions of Aztec C86 (3.xx, 4.xx and 5.xx) added support for MS-DOS "transitory" versions 1 and 2MS-DOS Timeline and which were less robust than the "baseline" MS-DOS version 3 and later which Aztec C86 targeted until its demise. Finally, Aztec C86 provided C language developers with the ability to produce ROM-able "HEX" code which could then be transferred using a ROM burner directly to an 8086 based processor. Paravirtualization may be more common today but the practice of creating low- level ROM code was more common per-capita during those years when device driver development was often done by application programmers for individual applications, and new devices amounted to a cottage industry. It was not uncommon for application programmers to interface directly with hardware without support from the manufacturer. This practice was similar to Embedded Systems Development today. Thomas Fenwick and James Goodnow II were the two principal developers of Aztec-C. Fenwick later became notable as the author of the Microsoft Windows CE kernel or NK ("New Kernel") as it was then called.Inside Windows CE (search for Fenwick) Microsoft C cross compilers = Early history – 1980s = Microsoft C (MSC) has a shorter history than othersMicrosoft Language Utility Version History dating back to the 1980s. The first Microsoft C Compilers were made by the same company who made Lattice C and were rebranded by Microsoft as their own, until MSC 4 was released, which was the first version that Microsoft produced themselves.History of PC based C-compilers In 1987 many developers started switching to Microsoft C, and many more would follow throughout the development of Microsoft Windows to its present state. Products like Clipper and later Clarion emerged that offered easy database application development by using cross language techniques, allowing part of their programs to be compiled with Microsoft C. Borland C (California company) was available for purchase years before Microsoft released its first C product. Long before Borland, BSD Unix (Berkeley University) had gotten C from the authors of the C language: Kernighan and Ritche who wrote it in unison while working for AT&T; (labs). K&R;'s original needs was not only elegant 2nd level parsed syntax to replace asm 1st level parsed syntax: it was designed so that a minimal amount of asm be written to support each platform (the original design of C was ability to cross compile using C with the least support code per platform, which they needed.). Also yesterdays C directly related to ASM code wherever not platform dependent. Today's C (more-so c++) is no longer C compatible and the asm code underlying can be extremely different than written on a given platform (in Linux: it sometimes replaces and detours library calls with distributor choices). Today's C is a 3rd or 4th level language which is used the old way like a 2nd level language. = 1987 = C programs had long been linked with modules written in assembly language. Most C compilers (even current compilers) offer an assembly language pass (that can be tweaked for efficiency then linked to the rest of the program after assembling). Compilers like Aztec-C converted everything to assembly language as a distinct pass and then assembled the code in a distinct pass, and were noted for their very efficient and small code, but by 1987 the optimizer built into Microsoft C was very good, and only "mission critical" parts of a program were usually considered for rewriting. In fact, C language programming had taken over as the "lowest-level" language, with programming becoming a multi-disciplinary growth industry and projects becoming larger, with programmers writing user interfaces and database interfaces in higher-level languages, and a need had emerged for cross language development that continues to this day. By 1987, with the release of MSC 5.1, Microsoft offered a cross language development environment for MS- DOS. 16 bit binary object code written in assembly language (MASM) and Microsoft's other languages including QuickBASIC, Pascal, and Fortran could be linked together into one program, in a process they called "Mixed Language Programming" and now "InterLanguage Calling".Which Basic Versions Can CALL C, FORTRAN, Pascal, MASM If BASIC was used in this mix, the main program needed to be in BASIC to support the internal runtime system that compiled BASIC required for garbage collection and its other managed operations that simulated a BASIC interpreter like QBasic in MS-DOS. The calling convention for C code, in particular, was to pass parameters in "reverse order" on the stack and return values on the stack rather than in a processor register. There were other programming rules to make all the languages work together, but this particular rule persisted through the cross language development that continued throughout Windows 16 and 32 bit versions and in the development of programs for OS/2, and which persists to this day. It is known as the Pascal calling convention. Another type of cross compilation that Microsoft C was used for during this time was in retail applications that require handheld devices like the Symbol Technologies PDT3100 (used to take inventory), which provided a link library targeted at an 8088 based barcode reader. The application was built on the host computer then transferred to the handheld device (via a serial cable) where it was run, similar to what is done today for that same market using Windows Mobile by companies like Motorola, who bought Symbol. = Early 1990s = Throughout the 1990s and beginning with MSC 6 (their first ANSI C compliant compiler) Microsoft re-focused their C compilers on the emerging Windows market, and also on OS/2 and in the development of GUI programs. Mixed language compatibility remained through MSC 6 on the MS-DOS side, but the API for Microsoft Windows 3.0 and 3.1 was written in MSC 6. MSC 6 was also extended to provide support for 32-bit assemblies and support for the emerging Windows for Workgroups and Windows NT which would form the foundation for Windows XP. A programming practice called a thunk was introduced to allow passing between 16 and 32 bit programs that took advantage of runtime binding (dynamic linking) rather than the static binding that was favoured in monolithic 16 bit MS-DOS applications. Static binding is still favoured by some native code developers but does not generally provide the degree of code reuse required by newer best practices like the Capability Maturity Model (CMM). MS-DOS support was still provided with the release of Microsoft's first C++ Compiler, MSC 7, which was backwardly compatible with the C programming language and MS-DOS and supported both 16 bit and 32 bit code generation. MSC took over where Aztec C86 left off. The market share for C compilers had turned to cross compilers which took advantage of the latest and greatest Windows features, offered C and C++ in a single bundle, and still supported MS-DOS systems that were already a decade old, and the smaller companies that produced compilers like Aztec C could no longer compete and either turned to niche markets like embedded systems or disappeared. MS-DOS and 16 bit code generation support continued until MSC 8.00c which was bundled with Microsoft C++ and Microsoft Application Studio 1.5, the forerunner of Microsoft Visual Studio which is the cross development environment that Microsoft provide today. = Late 1990s = MSC 12 was released with Microsoft Visual Studio 6 and no longer provided support for MS- DOS 16 bit binaries, instead providing support for 32 bit console applications, but provided support for Windows 95 and Windows 98 code generation as well as for Windows NT. Link libraries were available for other processors that ran Microsoft Windows; a practice that Microsoft continues to this day. MSC 13 was released with Visual Studio 2003, and MSC 14 was released with Visual Studio 2005, both of which still produce code for older systems like Windows 95, but which will produce code for several target platforms including the mobile market and the ARM architecture. = .NET and beyond = In 2001 Microsoft developed the Common Language Runtime (CLR), which formed the core for their .NET Framework compiler in the Visual Studio IDE. This layer on the operating system which is in the API allows the mixing of development languages compiled across platforms that run the Windows operating system. The .NET Framework runtime and CLR provide a mapping layer to the core routines for the processor and the devices on the target computer. The command-line C compiler in Visual Studio will compile native code for a variety of processors and can be used to build the core routines themselves. Microsoft .NET applications for target platforms like Windows Mobile on the ARM architecture cross-compile on Windows machines with a variety of processors and Microsoft also offer emulators and remote deployment environments that require very little configuration, unlike the cross compilers in days gone by or on other platforms. Runtime libraries, such as Mono, provide compatibility for cross-compiled .NET programs to other operating systems, such as Linux. Libraries like Qt and its predecessors including XVT provide source code level cross development capability with other platforms, while still using Microsoft C to build the Windows versions. Other compilers like MinGW have also become popular in this area since they are more directly compatible with the Unixes that comprise the non-Windows side of software development allowing those developers to target all platforms using a familiar build environment. Free Pascal Free Pascal was developed from the beginning as a cross compiler. The compiler executable (ppcXXX where XXX is a target architecture) is capable of producing executables (or just object files if no internal linker exists, or even just assembly files if no internal assembler exists) for all OS of the same architecture. For example, ppc386 is capable of producing executables for i386-linux, i386-win32, i386-go32v2 (DOS) and all other OSes (see ). For compiling to another architecture, however, a cross architecture version of the compiler must be built first. The resulting compiler executable would have additional 'ross' before the target architecture in its name. i.e. if the compiler is built to target x64, then the executable would be ppcrossx64. To compile for a chosen architecture-OS, the compiler switch (for the compiler driver fpc) -P and -T can be used. This is also done when cross compiling the compiler itself, but is set via make option CPU_TARGET and OS_TARGET. GNU assembler and linker for the target platform is required if Free Pascal does not yet have internal version of the tools for the target platform. Clang Clang is natively a cross compiler, at build time you can select which architectures you want Clang to be able to target. See also * MinGW * Scratchbox * Free Pascal * Cross assembler References External links * Cross Compilation Tools – reference for configuring GNU cross compilation tools * Building Cross Toolchains with gcc is a wiki of other GCC cross- compilation references * Scratchbox is a toolkit for Linux cross-compilation to ARM and x86 targets * Grand Unified Builder (GUB) for Linux to cross- compile multiple architectures e.g.:Win32/Mac OS/FreeBSD/Linux used by GNU LilyPond * Crosstool is a helpful toolchain of scripts, which create a Linux cross-compile environment for the desired architecture, including embedded systems * crosstool-NG is a rewrite of Crosstool and helps building toolchains. * buildroot is another set of scripts for building a uClibc-based toolchain, usually for embedded systems. It is utilized by OpenWrt. * ELDK (Embedded Linux Development Kit). Utilized by Das U-Boot. * T2 SDE is another set of scripts for building whole Linux Systems based on either GNU libC, uClibc or dietlibc for a variety of architectures * Cross Linux from Scratch Project * IBM has a very clear structured tutorial about cross-building a GCC toolchain. * Cross-compilation avec GCC 4 sous Windows pour Linux - A tutorial to build a cross-GCC toolchain, but from Windows to Linux, a subject rarely developed Compiler theory "

❤️ Her Majesty's Ship ❄️

"His or Her Majesty's Ship, abbreviated HMS and H.M.S., is the ship prefix used for ships of the navy in some monarchies. Derived terms such as "HMAS" and equivalents in other languages such as "SMS" are used. United Kingdom With regard to the separate English and Scottish navies of the middle ages and early modern era, historians usually use terms such as "English Ship" or "Scottish Ship". During the late 17th century, following The Restoration, the name Royal Navy was officially adopted, as well as the prefix His Majesty's Ship, and later, Her Majesty's Ship. The first recorded use of the abbreviated form "HMS" was in 1789, in respect of HMS Phoenix. From 1707 to circa 1800 HBMS (for His Britannic Majesty's Ship) was also used. Submarines in Her Majesty's service also use the prefix "HMS", standing for "Her Majesty's Submarine". The Royal Yacht Britannia, which was a commissioned ship in the Royal Navy, was known as HMY Britannia. Otherwise all ships in the Royal Navy are known as HM Ships, though formerly when a distinction was made between three-masted ship-rigged ships and smaller vessels they would be called HM Frigate X, or HM Sloop Y. The prefix "HMS" is also used by shore establishments that are commissioned "stone frigates" in the Royal Navy. Examples include HMS Excellent, a training school located on an island in Portsmouth Harbour, and HMS Vulcan, in Caithness in the Highland area of Scotland, which is established to test the design of nuclear power systems for use in submarines. The sample ship name used by the Royal Navy to signify a hypothetical vessel is . This is a name that has been used by the Royal Navy in the past; on the eve of World War II the name was given to the Royal Canadian Navy. HMCS Nonsuch was the "stone frigate" of the Edmonton Division of the Canadian Naval Reserve. Prefixing the name by "the", as in "the HMS Ark Royal", while common, is considered bad grammar. The Guardian style guide British government ships not in the Royal Navy have other designations, such as "RFA" for ships in the Royal Fleet Auxiliary. Commonwealth realms and former British Empire Historically, variants on "HMS" have been used by the navies of British colonies. The practice is maintained in several Commonwealth realms (states which recognise Queen Elizabeth II as their monarch). =Current= *Canada: Her Majesty's Canadian Ship (HMCS) / () (NCSM) – Royal Canadian Navy *Australia: Her Majesty's Australian Ship (HMAS) – Royal Australian Navy *New Zealand: Her Majesty's New Zealand Ship (HMNZS) – Royal New Zealand Navy *Bahamas: Her Majesty's Bahamian Ship (HMBS) – Royal Bahamas Defence Force *Barbados: Her Majesty's Barbadian Ship (HMBS) – Barbados Defence Force *Papua New Guinea: Her Majesty's Papua New Guinean Ship (HMPNGS)Australian War Memorial Glossary *Jamaica: Her Majesty's Jamaican Ship (HMJS) – Jamaica Defence Force *Tuvalu: Her Majesty's Tuvalu Surveillance Ship (HMTSS) =Former= *Colonial: Her Majesty's Colonial Ship (HMCS)The gunboat CNS (formerly HMCS) Protector; 1909 (National Library of Australia) *Australia: Commonwealth Naval Ship (CNS)Port-side view of the former South Australian Colonial gunboat HMAS (ex HMS, ex HMCS) Protector; 1918 (National Library of Australia) *British India: Her Majesty's Indian Ship (HMIS) *Burma: Her Majesty's Burmese Ship (HMBS) *South Africa: Her Majesty's South African Ship (HMSAS) *British Ceylon: Her Majesty's Ceylon Ship (HMCyS) *Queensland (before the federation of Australia): Her Majesty's Queensland Ship (HMQS)HMQS Gayundah (Aboriginal for 'lightning') and her sister ship HMQS Paluma ('thunder') (National Library of Australia) *Victoria (before the federation of Australia): Her Majesty's Victorian Ship (HMVS) * Dominion of Pakistan, from creation in 1947 until Pakistan became a republic in 1956: Her Majesty's Pakistani Ship (HMPS) Germany ' (; German: "His Majesty's Ship", abbreviated to S.M.S.' or SMS) was the ship prefix used by the Prussian Maritime Enterprise (Seehandlung), the Prussian Navy, the Imperial German Navy (Kaiserliche Marine) and the Austro-Hungarian Navy. It was created by translating the British prefix into German. It was sometimes also abbreviated to S.M. or SM (for Seiner Majestät) when a ship was mentioned by class, such as S.M. Kleiner Kreuzer Emden ("His Majesty's Light Cruiser Emden"). Special forms included *S.M.Y. (or SMY) = Seiner Majestät Yacht ("His Majesty's Yacht") for king's or emperor's yacht *I.M.Y. = Ihrer Majestät Yacht ("Her Majesty's Yacht") for the queen's or empress' yacht. *S.M.F. = Seiner Majestät Feuerschiff ("His Majesty's Lightvessel") *S.M.H. = Seiner Majestät Hilfsschiff ("His Majesty's Auxiliary Ship") *S.M.W. = Seiner Majestät Werkstattschiff ("His Majesty's Workshop Ship") *S.M.U. = Seiner Majestät Unterseeboot ("His Majesty's Submarine", prefixing a number not a name) Netherlands International prefixes for ships of the Royal Netherlands Navy is HNLMS (His/Her Netherlands Majesty's Ship). The Netherlands navy itself uses the prefixes Zr.Ms. (Zijner Majesteits, His Majesty's) when a king is on the throne, and Hr.Ms. (Harer Majesteits, Her Majesty's) when there is a queen. This happens automatically at the moment of coronation. Norway The Royal Norwegian Navy vessels have since 1946 been given the ship prefix "KNM", short for Kongelig Norske Marine (Royal Norwegian Navy). In English, they are given the prefix "HNoMS", short for "His/Her Norwegian Majesty's Ship" ("HNMS" could be also used for the Royal Netherlands Navy, for which "HNLMS" is used instead). Coast Guard vessels are given the prefix "KV" for KystVakt (Coast Guard) in Norwegian and "NoCGV" for Norwegian Coast Guard Vessel in English. Romania Prior to World War II & the subsequent ousting of the monarchy & occupation of the Soviet Union postwar, all Royal Romanian Navy vessels were given the prefix NMS (Nava Majestăţii Sale) or “His/her Majesty’s Ship”. Sweden In the Royal Swedish Navy, all vessels are given the prefix HMS (Hans or Hennes Majestäts Skepp). This is true for both surface and submarine vessels.Ordbok: "H" Försvarsmakten Abroad, Swedish navy ships are sometimes given the prefix HSwMS (for His Swedish Majesty's Ship), to avoid confusion with other uses of the HMS prefix. See also *See ship prefix for a list *Royal Mail Ship (RMS) *:Ships of the Royal Navy *HM Prison (HMP) *Her Majesty's Young Offender Institution (HMYOI) *Her Majesty's Government (HMG) *Her Majesty's Royal Palace and Fortress of the Tower of London *United States Ship References Royal Navy Ship prefixes "

❤️ Pete Wendling ❄️

"Pete Wendling (June 6, 1888 - April 7, 1974) was an American composer and pianist, born in New York City to German immigrants. He started his working life as a carpenter, but gained fame during the mid 1910s as a popular music composer - producing such hits as Yaaka Hula Hickey Dula, Take Me To The Land Of Jazz, Take Your Girlie To The Movies, Felix The Cat, and Oh What A Pal Is Mary. More however, Wendling was also one of the top pianists of his era, and set a long-standing record when he appeared at the London Hippodrome for 8 consecutive weeks. He joined the Rhythmodik Music Roll Company in 1914, and started to record his performances on paper rolls for player pianos. In 1916 he recorded for American Piano Company (Ampico). In 1918, he joined the largest piano roll company, QRS, and rapidly became one of their most popular artists - his distinctive yet always fresh performances constantly topping their best-selling lists and are still in production as of 2003 - over 80 years since they were produced. In 1925 QRS, who were tightening their belt due to declining sales, released Wendling, and he concentrated on his composing career until his retirement in the 1950s. Married to Anna, he had no children. He died in New York City in April 1974. References External links * Pete Wendling recordings at the Discography of American Historical Recordings. 1888 births 1974 deaths 20th-century American composers "

Released under the MIT License.

has loaded